Skip to main content

Main menu

  • About the Journal
    • Aims & Scope
    • Editorial Board
    • Browse Archive
    • Abstracting - Indexing
    • About IWA Publishing
  • Subscribe
    • Institutional Subscriptions
    • User Licences
    • IP Registration
    • IWA Member Subscription
  • Open Access
  • For Authors
    • Online Submission
    • Publish with Us
    • Instructions for Authors
    • Open Access
    • How to review a paper
    • Rights & Permissions
    • Article Promotion
  • For Librarians
    • Usage Statistics
    • Subscriber Services
    • Sample Issue
    • Terms and Conditions
  • For Readers
    • Recommend to Your Library
    • Rights & Permissions
    • How to Subscribe
  • Collections
  • Help
    • FAQ
    • Contact Us
  • Other Publications
    • IWAP Online
    • Journal of Hydroinformatics
    • Journal of Water and Health
    • Journal of Water and Climate Change
    • Journal of Water Reuse and Desalination
    • Journal of Water Supply: Research and Technology-AQUA
    • H2Open Journal
    • Hydrology Research
    • Water Practice and Technology
    • Water Research
    • Water Policy
    • Water Quality Research Journal
    • Water Science and Technology
    • Water Science and Technology: Water Supply
    • Journal of Water Sanitation and Hygiene for Development
    • Water Intelligence Online
    • Ingeniería del agua
    • IWA Publishing

User menu

  • Log-in
  • Sign-up for alerts

Search

  • Advanced search
Water Science and Technology: Water Supply
  • Other Publications
    • IWAP Online
    • Journal of Hydroinformatics
    • Journal of Water and Health
    • Journal of Water and Climate Change
    • Journal of Water Reuse and Desalination
    • Journal of Water Supply: Research and Technology-AQUA
    • H2Open Journal
    • Hydrology Research
    • Water Practice and Technology
    • Water Research
    • Water Policy
    • Water Quality Research Journal
    • Water Science and Technology
    • Water Science and Technology: Water Supply
    • Journal of Water Sanitation and Hygiene for Development
    • Water Intelligence Online
    • Ingeniería del agua
    • IWA Publishing

Log-in

Sign-up for alerts   

  • My Cart
Water Science and Technology: Water Supply
Browse Archive
Advanced Search
  • About the Journal
    • Aims & Scope
    • Editorial Board
    • Browse Archive
    • Abstracting - Indexing
    • About IWA Publishing
  • Subscribe
    • Institutional Subscriptions
    • User Licences
    • IP Registration
    • IWA Member Subscription
  • Open Access
  • For Authors
    • Online Submission
    • Publish with Us
    • Instructions for Authors
    • Open Access
    • How to review a paper
    • Rights & Permissions
    • Article Promotion
  • For Librarians
    • Usage Statistics
    • Subscriber Services
    • Sample Issue
    • Terms and Conditions
  • For Readers
    • Recommend to Your Library
    • Rights & Permissions
    • How to Subscribe
  • Collections
  • Help
    • FAQ
    • Contact Us

You are here

  • Home
  • Archive
  • Volume 18, Issue 2

Phosphorus fractions and its summer flux from sediments of deep reservoirs located at a phosphate-rock watershed, Central China

Yufei Bao, Yuchun Wang, Mingming Hu, Qiwen Wang
Published April 2018, 18 (2) 688-697; DOI: 10.2166/ws.2017.151
Yufei Bao
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, 1-A Fuxing Road, Haidian District, Beijing 100038, China and Department Key Laboratory of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuchun Wang
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, 1-A Fuxing Road, Haidian District, Beijing 100038, China and Department Key Laboratory of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: wangyc@iwhr.com
Mingming Hu
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, 1-A Fuxing Road, Haidian District, Beijing 100038, China and Department Key Laboratory of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qiwen Wang
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, 1-A Fuxing Road, Haidian District, Beijing 100038, China and Department Key Laboratory of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
  • Data
Loading

Abstract

Huangbai River, including four enchained reservoirs, is located in a phosphate-rock watershed in Yichang City, Central China. Previous studies showed that pollution levels due to activities of phosphate mining (PM) were extremely high and the water quality of reservoirs was severely affected by sedimentation. Yet, detailed knowledge of the sediment is lacking at that high phosphorus (P) concentration basin. Therefore, the different P fractions and its diffusion fluxes at the water-sediment interface of four deep reservoirs have been investigated for the first time to understand the internal P loading. The results indicated that the concentrations of total P , ranging from 9,631.5 to 581.6 mg kg−1, exhibited an apparent spatial trend from the upstream to the downstream reservoirs, which corresponded with the activities of P mining in this basin. The P-fraction concentrations obtained from the sites were mainly ranked in this order: P associated with calcium (Ca-Pi) > organic P (Po) > P bound to aluminum (Al), ferrum (Fe) and manganese (Mn) oxides and hydroxides (Fe/Al-Pi). The orthophosphate diffusion fluxes ranged from −0.40 ± 0.09 to 0.95 ± 0.14 mg m−2 d−1 which were positively related to P fraction concentrations while negatively related to oxidation–reduction potential and dissolved oxygen values. These results implied the dynamics role of internal P loading. The principle component analysis suggested that PM activities and internal P loading were the most reactive factors in this river system.

  • Huangbai River
  • orthophosphate diffusion fluxes
  • phosphate mining (PM)
  • phosphorus fraction
  • sediment
  • First received 2 March 2017.
  • Accepted in revised form 3 July 2017.
  • © IWA Publishing 2018
View Full Text

Log in using your username and password

Forgot your user name or password?

Purchase access

User Login Menu

  • Create a new account
  • Forgot username/password?
  • Can't get past this page?
  • Help with Cookies
  • Need to Activate?
Previous ArticleNext Article
Back to top

SELECTED ISSUE

Water Science and Technology: Water Supply: 18 (2)
  Volume 18, Issue 2

  Table of Contents
  Uncorrected Proofs
  Browse Archive

Actions

Email

Thank you for your interest in spreading the word on Water Science and Technology: Water Supply.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Phosphorus fractions and its summer flux from sediments of deep reservoirs located at a phosphate-rock watershed, Central China
(Your Name) has sent you a message from Water Science and Technology: Water Supply
(Your Name) thought you would like to see the Water Science and Technology: Water Supply web site.
Share
Phosphorus fractions and its summer flux from sediments of deep reservoirs located at a phosphate-rock watershed, Central China
Yufei Bao, Yuchun Wang, Mingming Hu, Qiwen Wang
Water Science and Technology: Water Supply Apr 2018, 18 (2) 688-697; DOI: 10.2166/ws.2017.151
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Citation Tools
Phosphorus fractions and its summer flux from sediments of deep reservoirs located at a phosphate-rock watershed, Central China
Yufei Bao, Yuchun Wang, Mingming Hu, Qiwen Wang
Water Science and Technology: Water Supply Apr 2018, 18 (2) 688-697; DOI: 10.2166/ws.2017.151

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
View Full PDF
Download Powerpoint
Save to my folders
Alerts

Please log in to add an alert for this article.

Print
  • Tweet Widget
  • Facebook Like

Jump to

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS AND DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGEMENTS
    • REFERENCES
  • Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analysis of carbon emission hot spot and pumping energy efficiency in water supply system
  • Pump-stoppage-induced water hammer in a long-distance pipe: a case from the Yellow River in China
  • The antibiotic resistance of heterotrophic bacteria in tap waters in London
Show more Research Article

Similar Articles

Keywords

Huangbai River
orthophosphate diffusion fluxes
phosphate mining (PM)
phosphorus fraction
sediment
  • Current Issue
  • Uncorrected Proofs
  • Browse Archive
  • Feedback
  • Online Submission
  • Subscribe
  • Contents Alerts
  • About the Journal
  • Open Access
  • Rights & Permissions

IWA Publishing
Alliance House
12, Caxton Street
London SW1H 0QS, UK

Tel: +44 (0)20 7654 5500
Fax: +44 (0)20 7654 5555
Remove (0) if calling from outside the UK
iwapublishing.com
Company registered in England no. 3690822

© IWA Publishing | Cookies | Terms & Conditions | Site Map | Privacy | ISSN Print: 1606-9749 | ISSN Online: 1607-0798